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Abstract 

Financial analytics platforms require a combination of high-throughput data ingestion and complex 

query execution. With the emergence of NoSQL databases, there is growing interest in understanding 

whether these systems can replace traditional relational databases in analytical workloads. This paper 

presents a performance and accuracy comparison between PostgreSQL (SQL) and Apache HBase 

(NoSQL) for real-time financial data analytics. We simulate a stock market analytics platform that 

ingests high-frequency trading data and executes various types of queries including trend analysis, 

joins, and aggregations. HBase shows superior scalability and write throughput, particularly under 

continuous data ingestion scenarios. However, PostgreSQL performs significantly better for complex 

analytical queries requiring multiple joins and subqueries, maintaining higher accuracy due to stronger 

data constraints. Query latency measurements reveal that HBase has a 30–40% advantage in simple 

lookups, but PostgreSQL outperforms in OLAP-type operations. Additionally, we examine schema 

design trade-offs, ease of query development, and support for ACID transactions. The paper concludes 

that while HBase is well-suited for time-series storage and real-time dashboards, SQL databases 

remain essential for accurate and complex analysis. A hybrid architecture combining both technologies 

may be optimal for financial platforms that need to balance scale and precision. 

 

1. Introduction 

Modern financial analytics platforms process vast quantities of structured and semi-structured data in 

real time. Applications such as market surveillance, algorithmic trading, risk modeling, and portfolio 

analysis depend on both high-speed data ingestion and sophisticated analytical capabilities. 

Traditionally, relational database management systems (RDBMS) like PostgreSQL have dominated this 

space due to their rich query languages, transactional integrity, and support for complex joins. 

However, the rise of NoSQL technologies—particularly column-oriented stores like Apache HBase—

has introduced scalable alternatives that promise superior performance in big data scenarios. 

While NoSQL databases are designed to handle unstructured and semi-structured data at scale, their 

relative immaturity in query complexity and transaction handling raises questions about their 

suitability for financial workloads that require both performance and precision. In response to this 

debate, this paper investigates whether NoSQL databases can effectively replace SQL systems in the 

context of real-time financial analytics. 

We present an empirical comparison of PostgreSQL and HBase based on ingestion performance, query 

latency, support for analytical queries, data integrity, and developer usability. The study simulates a 

real-world stock analytics platform processing high-frequency trading data and executing typical 

financial queries. By benchmarking both systems under identical workloads, we aim to illuminate the 

trade-offs between scalability and analytical power in SQL and NoSQL technologies. 
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2. Comparison Criteria 

To ensure a fair and comprehensive evaluation, we define the following comparison dimensions: 

2.1 Performance Metrics 

• Write Throughput: Ability to ingest real-time stock ticks at scale. 

• Query Latency: Response time for SELECT, JOIN, GROUP BY, and aggregate operations. 

• Read Throughput: Volume of data that can be read per second under concurrent access. 

2.2 Analytical Capabilities 

• Support for Complex Queries: Joins, subqueries, window functions, and stored procedures. 

• Time-Series Aggregation: Efficiency of grouping and summarizing data over time windows. 

2.3 Data Accuracy and Integrity 

• ACID Compliance: Level of transactional guarantees provided. 

• Data Consistency: Handling of constraints, referential integrity, and updates. 

2.4 Scalability 

• Horizontal Scaling: Ability to add nodes without rearchitecting the system. 

• Fault Tolerance: Behavior under node failure or network partitioning. 

2.5 Usability 

• Schema Design: Ease of data modeling for structured financial datasets. 

• Developer Productivity: Availability of mature tools, query interfaces, and community 

support. 

These criteria were selected based on the requirements of financial analytics applications, which often 

must balance throughput, latency, precision, and auditability. 

 

3. Methodology 

To evaluate PostgreSQL and HBase, we created a simulated financial analytics platform with the 

following features: 

• Data Source: Real-time stock tick data was synthesized using a generator that modeled trade 

volumes, prices, and time intervals from NYSE historical datasets. 

• Ingestion Rate: 10,000 tick records per second, with each tick containing: 

o Timestamp 

o Stock symbol 

http://www.ijbar.org/
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o Price 

o Volume 

o Exchange code 

3.1 Hardware Environment 

• 6-node cluster: 3 nodes for ingestion, 3 nodes for storage/query 

• 64 GB RAM, Intel Xeon 2.4 GHz, 1 TB SSD, Ubuntu 16.04 

• 10 Gbps Ethernet interconnect 

3.2 Software Stack 

• PostgreSQL 9.6 with TimescaleDB extension for time-series optimizations 

• Apache HBase 1.2.6 on Hadoop 2.7.3 with Phoenix SQL layer 

• Benchmarked using: 

o pgbench and pg_stat_statements for PostgreSQL 

o Apache JMeter + HBase shell + Phoenix for HBase 

3.3 Test Scenarios 

1. Bulk Insert: Ingest 1 million stock ticks per node. 

2. Simple Lookup: Query current price of a symbol. 

3. Windowed Aggregation: Calculate 1-minute average price per symbol. 

4. Complex Query: Join trades with reference tables for exchange info and perform grouping. 

Each scenario was run three times per system. Query latencies were measured at the 50th, 75th, and 

95th percentiles. 

 

4. Case A: PostgreSQL 

PostgreSQL is a mature, open-source relational database known for its extensibility, robust SQL 

support, and transactional integrity. With the TimescaleDB extension, PostgreSQL can efficiently 

manage time-series data by partitioning tables into chunks across time intervals. 

4.1 Strengths Observed 

• SQL Expressiveness: PostgreSQL handled nested queries, joins, and subqueries with ease. 

• OLAP Efficiency: Window functions and aggregates were fast due to index support and time 

partitioning. 

• Data Accuracy: Enforced data types, constraints, and triggers maintained high data quality. 

4.2 Performance Results 

http://www.ijbar.org/
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• Write Throughput: ~7,800 inserts/sec/node 

• Simple Query Latency: ~25 ms average 

• Complex Query Latency: ~110 ms average 

• Aggregation Query (1-minute average): ~65 ms average 

Although PostgreSQL trailed HBase in ingestion speed, its analytical performance was significantly 

better, especially in queries involving multiple joins. 

4.3 Limitations 

• Scalability: Horizontal scaling required external sharding or partitioning logic. 

• Insert Bottlenecks: Write performance degraded slightly under sustained high load. 

• Schema Rigidity: Schema evolution (e.g., adding columns) incurred downtime. 

 

5. Case B: HBase 

Apache HBase is a distributed, column-oriented NoSQL database built on top of the Hadoop 

ecosystem. Designed for real-time read/write access to large datasets, HBase excels at high-

throughput ingestion and scalable storage. With the Phoenix SQL layer, HBase offers partial SQL 

support, improving usability for structured queries. 

5.1 Strengths Observed 

• High Ingestion Rates: Native support for batched writes and append-only logs made HBase 

ideal for continuous time-series data ingestion. 

• Scalability: Nodes could be added with minimal reconfiguration, offering seamless horizontal 

scaling. 

• Efficient Lookups: Simple key-value style queries (e.g., current price lookup) were fast due to 

internal indexing on row keys. 

5.2 Performance Results 

• Write Throughput: ~12,500 inserts/sec/node 

• Simple Query Latency: ~14 ms average 

• Complex Query Latency: ~200 ms average (via Phoenix) 

• Aggregation Query (1-minute average): ~120 ms average 

HBase showed superior write throughput and performed well for simple, single-row lookups. However, 

its performance declined noticeably for analytical queries involving joins or aggregations, even when 

using Phoenix. 

5.3 Limitations 

http://www.ijbar.org/
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• Limited SQL Support: Phoenix adds SQL functionality, but lacks support for subqueries, 

recursive joins, and some window functions. 

• Weaker Data Constraints: HBase does not natively enforce constraints or foreign keys. 

• Schema Complexity: Data modeling required careful design of row keys and column families 

to avoid read amplification. 

 

6. Comparative Analysis 

The following table summarizes the head-to-head comparison between PostgreSQL and HBase across 

key dimensions: 

Criteria PostgreSQL HBase 

Write Throughput Moderate (~7,800 inserts/sec) High (~12,500 inserts/sec) 

Simple Lookup Latency ~25 ms ~14 ms 

Complex Query Latency ~110 ms ~200 ms (via Phoenix) 

OLAP Support Full SQL, joins, windowing Limited (no native joins) 

ACID Transactions Full ACID compliance Eventually consistent, BASE model 

Schema Flexibility Rigid Flexible, but complex modeling 

Horizontal Scalability Moderate (requires partitioning) Native and efficient 

Developer Tools Mature SQL ecosystem Limited but growing 

6.1 Observations 

• PostgreSQL is ideal for precision workloads, such as regulatory reporting, back-testing 

models, and data warehousing. 

• HBase suits high-speed ingestion and low-latency retrieval, such as trade event dashboards, 

market data distribution, and time-series storage. 

• Query development in PostgreSQL is significantly faster, thanks to full SQL support, whereas 

HBase requires careful tuning and Phoenix integration for complex queries. 

6.2 Hybrid Architecture Potential 

For modern financial platforms, combining PostgreSQL and HBase may offer the best of both worlds: 

• Use HBase for ingesting high-frequency trading data streams. 

• Use PostgreSQL for downstream OLAP analytics, compliance reports, and historical queries. 

• Periodically ETL from HBase to PostgreSQL for archiving and audit consistency. 

http://www.ijbar.org/


Index in Cosmos 

NOV 2017, Volume 7, ISSUE 4 

UGC Approved Journal 

www.ijbar.org 
ISSN 2249-3352 (P) 2278-0505 (E) 

Cosmos Impact Factor-5.86 

 

 

 

 

 
 

 
 
 

Page | 14 
 
 
 

This architecture balances scale with analytical depth and allows for cost-efficient resource allocation. 

 

7. Conclusion 

This paper presented a comparative study of PostgreSQL and HBase for real-time financial analytics. 

Our findings show that: 

• HBase excels at ingestion speed and horizontal scalability, but struggles with advanced 

analytics. 

• PostgreSQL delivers strong consistency, robust SQL capabilities, and lower latency for 

complex queries, but scales less efficiently under massive write loads. 

• Simple queries and time-series lookups perform better on HBase, while PostgreSQL is better 

suited for deep analytical workloads. 

Given the differing strengths, a hybrid approach leveraging both technologies is recommended for 

financial analytics platforms that need to manage high-volume, real-time data while also supporting 

accurate and complex reporting. 

Future research may explore: 

• Integration with in-memory processing engines (e.g., Apache Ignite, Redis) 

• Cloud-native SQL engines like Amazon Aurora or Google BigQuery 

• Machine learning query extensions and performance under model serving workloads 
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